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SUMMARY

A recently developed asymmetric implicit fifth-order scheme with acoustic upwinding for the spatial
discretization for the characteristic waves is applied to the fully compressible, viscous and non-stationary
Navier–Stokes equations for sub- and super-sonic, mildly turbulent, channel flow (Re� = 360). For a Mach
number of 0.1, results are presented for uniform (323, 643 and 1283) and non-uniform (expanding wall-
normal, 323 and 643) grids and compared to the (incompressible) reference solution found in (J. Fluid.
Mech. 1987; 177:133–166). The results for uniform grids on 1283 and 643 nodes show high resemblance
with the reference solution. Expanding grids are applied on 643- and 323-node grids. The capability of the
proposed technique to solve compressible flow is first demonstrated by increasing the Mach number to
0.3, 0.6 and 0.9 for isentropic flow on the uniform 643-grid. Next, the flow speed is increased to Ma= 2.
The results for the isothermal-wall supersonic flows give very good agreement with known literature
results. The velocity field, the temperature and their fluctuations are well resolved. This means that in
all presented (sub- and super-sonic) cases, the combination of acoustic upwinding and the asymmetric
high-order scheme provides sufficient high wave-number damping and low wave-number accuracy to give
numerically stable and accurate results. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

High-speed flows are important in gasturbines, airplanes, etc. Through the development in comput-
ing facilities, direct numerical simulations (DNS) and large eddy simulations (LES) of these flows
are now accessible. This results in the need for suitable unsteady flow solvers. Traditionally, these
simulations are performed using spectral methods. However, over the last decade compact implicit
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finite difference methods [1] have been successfully developed. These schemes combine high-order
accuracy with spectral-like resolution properties. The originally proposed implicit schemes were
symmetric, i.e. central-difference schemes which were employed to the convective as well as the
diffusive parts of the Navier–Stokes equations. This meant that they could only be used when the
grid-Reynolds number was small enough. For flows at higher Reynolds numbers the non-linear
convection term transfers energy from lower to higher wave-numbers. In absence of (or with minor)
diffusion, this energy is stored at the highest wave-numbers, which leads to undamped growth of
the Nyquist wave.

In e.g. [2–4] asymmetric spatial implicit schemes are proposed to supply high-wave number
damping to secure that the solution remains numerically stable on all represented wave-numbers.
These schemes use scheme-implicit damping, which acts as a high-order hyperviscosity model.
Over the years, numerous artificial viscosity models have already been proposed both for shock-
and turbulence-capturing. In the present numerical technique, the stability is obtained by apply-
ing upwinding on the acoustic waves. This ‘acoustic upwinding’ was previously proposed by
de Lange [4] and, in combination with the proposed asymmetric schemes, studied in a number of
one- and two-dimensional test cases. In the present paper, this combined technique is applied to a
mildly turbulent channel flow. It will be shown that using ‘acoustic upwinding’ with asymmetric
implicit schemes leads to accurate numerically stable solutions for this turbulent compressible flow
situation for both sub- and super-sonic flows. Ergo, the proposed technique is suitable for both
low and high Mach-number flows.

The physical problem treated in this paper has already been studied in previous research. In
the well-known article by Kim et al. [5] an incompressible-flow solution is given, which is used
as a reference for our new method throughout this paper. For the higher Mach-number flows, the
solutions presented by Coleman et al. in [6] are used. Although the present paper focuses on the
applicability of the numerical scheme, it is worthwhile to note that the turbulent channel flow
problem still contains features which are under investigation. In recent publications (e.g. [7]) the
generation of coherent structures in near-wall turbulence has been ascribed to a streak transient
growth mechanism. This process appears to be highly similar to the bypass transition mechanism
proposed in e.g. [8]. In both cases streamwise vorticity generates low- and high-speed streaks of
streamwise velocity, which in turn is responsible for a secondary instability that generates three-
dimensional coherent structures. Furthermore, the heat transfer problem of supersonic flows close
to Ma= 1 has recently received attention in e.g. [9].

As said, the present paper concentrates on the numerical properties of the proposed code. There-
fore, the solutions found for different uniform (323, 643 and 1283) and non-uniform (expanding
wall-normal, 323 and 643) grids are compared to [5]. In this comparison, the mean velocity profiles
and all components of the Reynolds stress are presented. Furthermore, the effect of the resolution
on the flow structures formed is briefly studied. In this case the solutions on different grid are
compared to find whether both the streaky mean-stream and the wall-normal vortical structures
are well represented.

The paper is organized as follows. First, the numerical methods are clarified in detail. The
technique used is based on the local one-dimension inviscid (LODI) relations as presented in [10],
extended with the inclusion of viscous dissipation. In these calculations the flow is assumed to be
isentropic, i.e. adiabatic walls and negligible influence of entropy generation through dissipation. In
the next section the geometry and the computation grids are presented. After this the numerical (time
and space) discretization techniques are described. The proposed method is an (three-dimensional)
extension of the code introduced in [4, 11]. First, low-Mach number (Ma= 0.1) results are presented
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for both uniform and non-uniform grids and compared to [5]. Three different uniform grids are
used: a low (323), middle (643) and high (1283) resolution grid. For the non-uniform grids the low-
and middle-resolution grids are used at two different expansion factors. As a next step, the results
for higher subsonic isentropic flow at Ma= 0.3, 0.6 and 0.9 are presented on the middle-resolution
grid to demonstrate the effect of compressibility on the structure of the generated turbulence. The
last step is a step-wise increase of the Mach number to supersonic flow conditions (Ma= 0.25, 1
and 2). To this end, the equations are extended to allow for non-isentropic flow. Here, the results
are compared to the DNS-simulations in [6]. At the end of the paper the main conclusions are
summarized.

2. NUMERICAL METHOD

2.1. Governing equations

The compressible unsteady Navier–Stokes equations are written as a sum of inviscid characteristics
combined with viscous stresses and dissipation. This is an extension of the LODI method described
in [10], where this formulation is used to define boundary conditions for compressible viscous
flows. In the non-conservative formulation this leads to the following set of equations:
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where � is density, ui is the velocity in direction i , s is entropy, c is the local speed of sound, �i j
is the i j-component of the stress matrix (�), � is the viscous dissipation. The pressure (p), density
(�) and entropy s are coupled through a state equation:

p= p0
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Furthermore, the bodyforce (Fi ) has been added to supply the forcing necessary. This force only
has a non-zero value for i = 1 (in x-direction). Its magnitude determines the displacement thickness
of the flow and is chosen such that

F1 = 2

Ly

(
Re� �0
Ly

)2

where Re� is set equal to 360, Ly is the channel height and �0 is the kinematic viscosity (≡ �/�)
in the reference state 0.
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The characteristic waves L are given by
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Here L1i and L5i are the acoustic waves in direction i , L2i the convective transport of entropy,
L3i and L4i represent the cross-wind convective fluxes.

To these conservation equations two equations need to be added:
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where c is the speed of sound, � is the ratio of specific heats, Cv is the specific heat at constant
volume and the index s indicates at constant entropy.

For low-Mach-number flows the dissipation in the entropy equation may be neglected and
isentropic (s = 0) conditions are assumed. For flows at higher Mach numbers, the influence of
dissipation increases and, therefore, the entropy equation needs to be solved. This means that in
addition to the convective transport, L2i , the conduction, (∇ · (�∇T )) and dissipation (�) term
need to be solved.

The fluid properties are chosen to resemble airflow: �0 = 1.2 (kg/m3), T0 = 300 (K), Rg = 287
(J/kgK), � =Cp/Cv = 1.4 (−), �= 1.458× 10−6T 1.5/(T + 110.4) (Ns/m2). Cp is the specific
heat at constant pressure, Rg the specific gas constant, � the fluid viscosity. The heat-conduction
coefficient � is set by choosing the Prandtl number equal to 0.7.

2.2. Geometry

The geometry is a channel with height Ly equal to 2h and periodic boundary conditions in flow
and spanwise direction. The length of the channel (Lx ) is 4�h. In spanwise direction periodic
boundary conditions are used over a width (Lz) of 2�h. As proposed by Poinsot and Lele [10]
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COMPRESSIBLE TURBULENT CHANNEL FLOW 209

the boundary conditions are imposed separately for the characteristic waves and stresses. The
no-slip conditions on top and bottom of the channel lead to L1i =L5i and L5i =L1i , respectively.

The size parameter h is set by the channel Reynolds number:

Re≡ 2U∞h

�0
= 8000

using an initial guess of U∞ defined by Ma=U∞/c0.
The first set of simulations are performed at low Mach number. This means that the flow

may be supposed to be isentropic (adiabatic and no dissipation). For supersonic-flow calculations
dissipation needs to be taken into account. For a streamwise periodic flow with adiabatic walls this
would inevitably lead to choking; therefore, the walls for the higher Mach-number calculations
have been modelled with an isothermal boundary condition (T = Tw = T0). For the entropy at the
wall, this leads to

�s
�t

= − Rg

�

��

�t

In the presented simulations, three different grids are used with Nx × Ny × Nx equal to 32×33×32,
64× 65× 64, 128× 129× 128. For these uniform grids the values of y+ of the first point next to
the wall are 11, 5.6 and 2.8 (respectively). Expanding grids are used to reduce these values for
the low- and middle-resolution grids. In this case the first ((Ny − 1)/2) + 1-grid-points y( j) are
distributed according to an exponentially expanding grid:

y( j + 1) =� j+1
j ′=1�

j ′−1 = y( j) + � j

with y1 = 0 and � the expansion parameter, i.e.

y( j) − y( j − 1)
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∣∣∣∣
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≡ �

Next, the points are distributed over the bottom halve of the channel (h) using

y( j)= h
y( j)

y((Ny − 1)/2) + 1

Finally, this distributed set of points is mirrored and placed across the top half of the channel.

2.3. Discretization

Asymmetric implicit schemes are used for the discretization of all characteristic waves. Here, the
fifth-order I5(r = 5/9) scheme is used, as proposed by de Lange [4]:

x1 f
′
i−1 + f ′

i + x2 f
′
i+1 = b1

2
( fi − fi−2) + a1( fi − fi−1) + a2( fi+1 − fi ) + b2

2
( fi+2 − fi )
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with

a1 = 14
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9

This scheme is equivalent to the fifth-order scheme proposed by Zhong [2]. For the acoustic fluxes
L1i and L5i the asymmetry is used as an upwinding scheme along the wave propagation velocity.
This ‘acoustic upwinding’ [4] is similar to the technique proposed by Sesterhenn [3]. For all other
(dissipative) fluxes, the sixth-order central scheme [1] is used, which is equivalent to the fifth-order
scheme with r chosen equal to 1. No separate scheme for second-order derivatives has been used.
The dissipative fluxes are calculated as the derivative of the stress tensor contributions. Therefore,
first the stresses are calculated and, next, their derivatives are determined. On both counts the sixth-
order scheme is used. For the high Mach-number simulations L2 [10] also needs to be evaluated.
Since, this is a convective flux, it is discretized with the asymmetric fifth-order implicit scheme.
Conduction and dissipation are both evaluated using the sixth-order central scheme.

For all discretizations at the non-periodic boundaries (i.e. the walls of the channel) a one-sided
third-order implicit scheme is used:
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for the boundary point. For the second point, next to the boundary, (i.e. j = 2, Ny−1) the convective
fluxes are calculated with the I5(r = 5

9 ) scheme applied with a prescribed (off-the-wall) direction.
For the dissipative fluxes in these points the implicit fourth-order Pade scheme is used [1].

In the case of non-equidistant grid (y)-spacing, the same discretization technique is used based
on

� f

�y
= � j

�y
� f

� j

The derivative of f with respect to j is calculated using the appropriate implicit high-order scheme.
For the derivative of y with respect to j the sixth-order implicit scheme is used. Note that for the
given expanding grid it is also possible to determine �y/� j analytically. Simulations have shown
that this gives (almost) identical results. In this paper �y/� j is always determined numerically.

For the time-marching technique, the split-time step integration proposed by de Lange [11]
is used. In this split-time integration the integration of each of the fluxes is bound by its own
stability criterion, which decreases the calculation time. Furthermore, it is a low-storage method;
the explicit time integrations (third-order Runge–Kutta (RK3) [12] on the smallest (acoustic) time
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scale and second-order predictor corrector on the convective and diffusive time-levels) use only
one storage variable per time-split level. As said, for the maximum size of the time step for the
integration of the different fluxes each has its separate stability limit. As long as these limits are
obeyed the solution proofs to be numerically stable:

1
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+ 1
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where �td, �tc and �ta represent the diffusive, convective and acoustic time step, respectively. The
maxi, j,k indicates the maximum over all interior grid points and dx , dy and dz are the local grid-
spacing in x , y and z directions. In the presented calculations, these criteria are always satisfied.
Furthermore, it has been checked that in all cases presented the chosen size of the time step has
negligible influence on the solutions.

3. RESULTS

In this section the simulation results are presented. To obtain the time-average solutions calculations
are first run over long enough time to get steady average profiles. Next, the results are sampled
each 0.5 Lx/U0 time-units during 10 Lx/U0 time-units. In these samples, all parameter values
are first averaged in both the x and z directions, which leads to spatial-averaged cross-channel
parameter profiles. Subsequently, these profiles are averaged over all time samples. This averaging
procedure is denoted by brackets 〈〉.

Obviously, the mean velocity in the channel depends on the accuracy to which the solution is
able to solve the fluctuating stresses at the wall. Therefore, a first comparison between the different
results can be based on the maximum of the average velocity (〈u〉max). The simulation results are
then compared to those found in [5], using time-averaged velocity profile (〈u〉/〈u〉max) and the
components of Reynolds stresses (Ri j ) defined by

Ri j =
〈u′

i u
′
j 〉

〈u〉2max

where u′
i, j denotes the deviation of ui, j from its average value 〈ui, j 〉.

3.1. Uniform grids

The results obtained with the low (32× 33× 32), middle (64× 65× 64) and high (128× 129× 128)
resolution grids are now first presented. The mean velocities 〈u〉 for these grids result in chan-
nel Reynolds (2h〈u〉/�0) numbers of 9400, 6270 and 6100, respectively. This indicates that the
coarsest grid is not sufficient to solve this problem. On the other hand, on the two finer grids the
solutions seem to give similar results, since the difference in these Reynolds numbers is in the
order of a few percent. To judge the grid convergence-rate of the proposed technique, the results on
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Figure 1. The mean velocity profile (top: 〈u〉/〈u〉max), diagonal Reynolds stresses (middle:
Rii ), off-diagonal Reynolds stresses (middle: Ri j ) for the uniform low (left), middle

(middle) and high (right) resolution grids.

a 48× 49× 48 have been added. The channel Reynolds numbers on this grid is about 6700. Based
on these numbers, the estimated convergence-rate is of order four.

As the next step, the obtained mean velocity profiles (〈u〉/〈u〉max) are compared to that of [5]
(see the top row of Figure 1). The results show that the present results on the high-resolution grid
are close to those presented in [5]. More surprisingly, the same still goes for the middle-resolution
grid. Although the mean profile near the wall shows a little more deviation, the general shape
is still well predicted. For the low-resolution solution this remains true in the global sense. The
thickness of the boundary layer is still resolved. However, at this resolution the shape of the profile
shows a significant loss of accuracy.

The middle row of Figure 1 gives the three diagonal Reynolds stresses (Rii ). The main contri-
bution to Rii is formed by the R11-contribution. Both other terms (R22 and R33) are significantly
smaller. On the highest resolution, all Rii -contributions are accurately resolved. For R22 and R33,
the difference between the reference and this solution is hardly visible (they show errors smaller
than 3%), while the R11 contribution shows a slight deviation at the top which is a little closer to
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Figure 2. The horizontal (top) and vertical spanwise (bottom) cross-section of the velocity field for the
uniform low (left), middle (middle) and high (right) resolution grids.

the wall (at y+ equal to 14 instead of 14.5) and higher (0.022 instead of 0.021). On the middle
resolution, the differences between the reference and the present solution are somewhat larger.
The predicted R22 and R33 now are visibly (about 20%) smaller, while the maximum in R11 has
increased to 0.023 and shifts away from the wall to y+ equal to 16. The low-resolution grid is
unable to resolve the Reynolds stresses. This results in the oscillatory behaviour of R22. It appears
that there exists a (numerical) wall-to-wall wave in v′, which has a wavelength of about 5–6
grid-points (ergo of about 60 wall units).

The same trend continues to be true for the non-diagonal Reynolds stresses (Ri j ). In this case the
largest contribution comes from the R12. For the high-resolution grid, this stress term is reproduced
accurately. The middle resolution still holds on to the global structure although differences now
grow to about 20%. The low-resolution solution still shows the minimum in R12. However, its
value is 50% off. The other two, R13 and R23, show that there is hardly any correlation in these
velocity components. On all grids, this is also found in the present calculations. It is, however,
worthwhile to note that calculations need to run over a long enough time to reduce the correlation
to small values (in fact the longer they run the smaller R13 and R23 become).

As the last step in the comparison of these results the instantaneous results for a vertical spanwise
and horizontal cross-section of the flow field are presented in Figure 2. In both planes the in-plane
(resp. v −w and u′ −w) velocity components are represented by streamlines, while the grey-scale
gives the plane normal velocity (resp. u and v).

The horizontal cross-section (Figure 2 top) shows the velocity field at h/8 from the wall. In
this plane the flow consists of a low- and high-velocity streaks. On the sides and heads of these
streaks vortices appear with a typical size of h/4. At the middle-resolution level, the structure can
still be predicted. On the low-resolution grid the streaky structure loses a lot of its features. Still
globally the main characteristics of the streaks and vortices remain intact.

For the vertical cross-section, the high-resolution result shows the bursts of streamwise vorticity
which are responsible for the transport of low-momentum fluid from the wall and high-momentum
fluid towards the wall. In this way they cause the velocity streaks which were present in the
horizontal cross-section. The typical size of these vortices is about h/4. For the middle-resolution
grid this same flow structure is found. The size of the vortices can still be resolved. This is no
longer true for the low-resolution solution. For this grid the size of the vortices (h/4) corresponds
to about 4 nodes in wall-normal and 2 nodes in spanwise direction. Obviously, on this grid these
structures can no longer be resolved.
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The structures present in this mildly turbulent boundary layer are very similar to the structures
found in the study of bypass boundary-layer transition, e.g. [8]. In that case the coupling of
streamwise vorticity and velocity streaks is well-established [13]. The secondary instability of
these streaks is held responsible for the final breakdown to turbulence. At present the description
of this breakdown is studied [14, 15]. One possible explanation is the growth of wall-normal
vorticity in the shear layers between streaks. The results in Figure 2 also show this type of
structures, i.e. streamwise vorticity coupled to velocity streaks with wall-normal vortices in the
shear regions between streaks.

3.2. Spectral properties

The discretization used in these simulations has been chosen to have damping restricted to the
highest wave-numbers. As such, the scheme provides an (anisotropic) hyperviscosity term of the
order h5(�6u/�h6). This high-order implicit asymmetric discretization combined with acoustic
upwinding has proved to give satisfactory results in one- and two-dimensional test-problems [4].
Furthermore, similar schemes have also been applied to DNS-calculations of transitional flows
[2] and [3]. Similar DNS-channel flow calculations have also been performed in [16]. The major
difference with the technique used in [16] is that, due to the use of the acoustic upwinding with
the high-order asymmetric scheme, the present calculations can be performed on (very) coarse
grids without the necessity of introducing additional damping for either shock-capturing (ENO)
or turbulent dissipation from a LES-model.

On each resolution, the scheme must be able to simulate a sustained turbulent sub- and super-
sonic flow. This means that these simulations test both the accuracy (turbulent production) and
the damping (‘turbulent dissipation’) of the numerical technique. To get an idea of the spectral
performance of the code, the span- and stream-wise-mean line-spectra of u at different resolutions
are compared in Figure 3. This shows the resemblance between the spectrum found at the 643-grid
compared to that of the 1283-grid. The 323-grid shows a slightly distorted spectrum. As already
shown, the results on this resolution lead to vortex-rolls in the boundary layer. Therefore, the
turbulent structures in this case has not been accurately predicted. For completeness, the spectrum
on the 483-grid is added. On all presented grids the dissipation at the smallest grid scale has a
comparable effect. This means that all spectra have similar shapes and, only for wave-numbers
close to about 2–3 times the Nyquist wavelength, the numerical dissipation starts to reduce the
kinetic energy.

The essential feature of the presented spectra is that, on all resolutions, the damping provided
by the numerical scheme leads to very similar decaying spectral-energy. Therefore, an increase of
resolution leads to more resolved scales (as one would expect). And, more important, the decay
towards the non-resolved scales is (almost) independent of the chosen resolution.

3.3. Expanding grids

The accuracy of the results for the low- (32× 33× 32) and middle- (64× 65× 64) resolution grids
can be increased by applying expanding grids. For the low-resolution grid, an expansion factor
(�) of 1.1 is used. On this grid the y+ on the first point next to the wall equals 5. Note that, in
reference to the uniform grids, this means that this grid is close to the middle-resolution grid.
Similarly, the expansion factor on the middle resolution is chosen to be � = 1.05, which results in
y+ values of 2.4. It is worthwhile to note here that calculations for higher expansion factors lead
to similar results, i.e. increase of the expansion factor did not increase the accuracy. This may
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Figure 3. The span- and stream-wise mean line-spectra of u for Ma= 0.1 on the channel
centre-plane for four different uniform grids.

indicate that through the redistribution of accuracy, the error remains more or less similar, i.e. the
accuracy depends mainly on the total number of points and less on their distribution.

The profiles of 〈u〉/〈u〉max, Rii and Ri j are presented in Figure 4 for the low resolution (left)
and for the middle resolution (right). The low-resolution grid results show an improved solution.
The maximum value and position of R11 are reproduced with an accuracy comparable to that of
the middle-resolution (uniform) grid. On the other hand, the minimum in R12 hardly seems to have
shifted. Furthermore, although greatly improved (no longer oscillatory), R22 and R33 are still far
from accurate. The increased resolution close to the wall increases the accuracy to which the wall
stress can be resolved. However, this leads to a decrease of the accuracy of the resolved scales in
the channel centre.

The improvement of the representation of the flow structures becomes obvious from the cross
sections of the flow, presented in Figure 5. The vortical and streaky structures appear to be
reasonably well captured. This indicates that resolving the flow structures in wall-normal direction
is crucial.

For the middle-resolution expanding grid, only minor changes in all profiles are detected.
Obviously, in the expanding grid the improvement of resolution close to the wall is paid for by
the reduction of accuracy in the remainder of the domain. And it appears that for all variables
presented the costs never exceed the gain. This results in the increased accuracy of 〈u〉/〈u〉max and
R11 close to the wall, while there is no improvement in e.g. R12 and the maximum value of R11
is further off.
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Figure 4. The mean velocity profile (top: 〈u〉/〈u〉max), diagonal Reynolds stresses (middle: Rii ),
off-diagonal Reynolds stresses (bottom: Ri j ) for the expanding grids of low resolution with � = 1.1

(left) and middle resolution with �= 1.05 (right).
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Figure 5. The horizontal (left) and vertical spanwise (right) cross-section of the velocity field for the
expanding grids of low resolution with � = 1.1.

To appreciate the accuracy obtained on the uniform grids, it is worthwhile to note that the use
of expansion factors comes at the cost of an increase in computational effort. This is due to the
increase of the amount of time-steps needed to assure numerically stable solutions. The smallest
time-step (�ta, for the acoustic integration) scales linearly with the size of the grid. This means
that the time needed for � = 1.05-grid on the middle resolution takes about 3 times (y+

unif/y
+
exp)

longer. On the other hand, one might also judge the results on the low-resolution grid with an
expansion factor of 1.1 to be sufficiently accurate. When comparing the computational effort on
this grid to that of the uniform middle-resolution grid the number of nodes is obviously decisive.
This means that the necessary time for the calculations on the low-resolution expansion grids is
about 8 times less.

3.4. Subsonic isentropic flow

One advantage of the proposed numerical scheme is that it is suitable for compressible flow
simulations. This means that the effect of compressibility on the turbulent structures can be
examined by increasing the Mach number. Note, however, that the isentropic modelling only
suffices for lower Mach numbers. If the presented technique should be extended to higher Mach
numbers, the entropy equation must be taken into account. This also means that the wall boundary
conditions need to be extended (isothermal or adiabatic). For lower Mach numbers the isentropy
assumption remains valid. The results obtained at Ma= 0.3, 0.6 and 0.9 are calculated on the
uniform 643-grid. In all cases the proposed numerical scheme leads to stable results, due to the
used acoustic upwinding, which acts as a low-pass filter on the characteristics. Since the results
for these Mach numbers give highly similar results, only those on Ma= 0.6 are presented in detail.

As Figure 6 shows the mean velocity profile is barely influenced. Apparently, the mean velocities
tend to concentrate a little more on the channel centre, which results in a slight decrease in the
velocity near the walls. The increased Mach number results in a shift of the peak in R11 towards
the wall. For Ma= 0.6, the peak is found at y+ ≈15. The profiles also show that the peak value of
R11 increases. The increased Mach number leads to an increase of R22. This must mean that the
energy of v-fluctuations must have increased. This effect of the change in Mach number also leads
to an increase in R12. This similarity in the low-Mach regime corresponds to subsonic results,
presented in e.g. [6]. This is a clear indication that the proposed numerical technique accurately
solves the subsonic channel flow.

Comparison of the flow structures obtained at Ma= 0.6 (see Figure 7) to those at Ma= 0.1
(Figure 2) shows that the influence of compressibility on the dominating flow structures is not
evident. It appears that, in the horizontal (streamwise) cross-section the velocity streaks become
shorter as the Mach number is increased. Furthermore, the wall-normal vortices formed in the
shear within streaks appear to be somewhat condensed. In the vertical (spanwise) cross-section
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Figure 6. The mean velocity profile (right: 〈u〉/〈u〉max), diagonal Reynolds stresses (middle: Rii ),
off-diagonal Reynolds stresses (left: Ri j ) for Ma= 0.6.

Figure 7. The horizontal (left) and vertical spanwise (right) cross-section of the flow for Ma= 0.6.

Figure 8. The streamwise- and time-mean peak width of the spanwise autocorrelation [h] for u (left),
v (middle) and w (right) for Ma= 0.3, 0.6 and 0.9.

one would expect to recognize the result of the increase in v-fluctuations. However, the results in
these cross-sections show to be very similar; the increase in R22 and the peak-shift towards the
wall are too small to be noticeable in the flow patterns.

A quantitative estimate of the size of the flow patterns can be determined from the peak width
of the spanwise autocorrelation of the three velocity components (	u , 	v , 	w). This peak width
is averaged in streamwise direction and for all time steps (this averaging is again denoted with
brackets 〈〉). The mean wall-normal size distributions for the three simulated Mach numbers are
presented in Figure 8. First, it is worth noting that the estimated structure size close to the wall is
about h/5, which closely agrees with previous estimations based on the flow patterns. A second
observation is that the structures-size development at different heights for u and v is very similar,
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while that of w shows different behaviour. Close to the wall 〈	u〉/h is about 0.2 and from y+
of 20 on 〈	u〉/h rapidly increases to about 0.5. The same holds for 〈	v〉/h; however, the size of
these structures is slightly smaller and the increase starts somewhat later. The scales represented
by 〈	w〉/h are larger; they grow from 0.2 at the wall to 0.6 in the channel centre. Furthermore,
they appear to grow exponentially with y+. Figure 8 shows that the introduction of compressibility
leads to a decrease in the size of the flow patterns. For both 〈	u〉/h and 〈	w〉/h, the scale size
throughout the channel decreases in the order of 10%. For 〈	v〉/h the influence of the Mach
number is somewhat smaller and confined to the near-wall region.

3.5. Supersonic flow

The Mach number is now stepwise increased from 0.25, 1 to 2, similar to the DNS-results in [6],
to test if the hyperviscosity provided in the proposed technique can also be applied to flows
at supersonic speeds. As already mentioned, the equations are now extended with the entropy
equation, taking the conduction and dissipation into account and using isothermal wall conditions.

In Figure 9 the results for Ma= 2 are presented on the middle-resolution grid. These figures
show that even at supersonic Mach numbers the main flow-features remain to be very similar.
There are, however, a couple of noteworthy changes. The inward shift of the maximum of R11
has reversed. It is now found at y+ ≈ 22. Furthermore, the strength of both R22 and R33 has gone
down. The outward shift of the u-fluctuations combined with the decreased level of v-fluctuations
also shows in the shifted and decreased levels of R12.

The structure of the turbulent fluctuations may be evaluated from the mixing length and Reynolds-
stress correlation. These are shown in Figure 10 for the different grids at Ma= 2. The solutions
on all three resolutions show a very good resemblance to the plots presented in [6] which again
validates the present numerical technique.

In Figure 11 the profiles of the mean temperature (〈
〉) and temperature fluctuations (〈
′〉rms)
are shown, scaled according to


 ≡ T − Tw

〈u〉2max,y/(2Cp)

The result shows that the scaled-temperature profiles look very similar for increasing
Mach numbers, while the maximum temperature level shifts from approximately 0.5 to 0.55.

Figure 9. The mean velocity profile (right: 〈u〉/〈u〉max), diagonal Reynolds stresses (middle: Rii ),
off-diagonal Reynolds stresses (left: Ri j ) for Ma= 2.
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Figure 10. The mean mixing length (left) and Reynolds-stress correlation (right) for Ma= 2
for the three different resolutions.

Figure 11. The mean temperature profile (left: 
), for Ma= 2 compared to the model equation (middle)
and the temperature fluctuations (right: 〈�
〉rms) for Ma= 0.25, 1 and 2.

In Figure 11 (middle) the Ma= 2 result is compared to the model equation [9]:

〈Tmodel〉= Tw + 〈u〉
[
�〈T 〉/�y
�〈u〉/�y

]
w

− Prt
〈u〉2
2Cp

The numerical result shows very close resemblance with the model for Prt ≈ 0.5. For smaller
Mach numbers the similarity to the model also holds with a slight decrease of Prt (to about 0.45
at Ma= 0.25). The temperature-fluctuation profiles in Figure 11 (right) are scaled in a similar
way. The maximum close to the wall shifts outward with increasing Mach number, from about
y/h = 0.04 for Ma= 0.25 to about y/h = 0.06 for Ma= 2. These results closely resemble the
results in [6].

One of the main effects of the increased Mach numbers noted in [6] is the increased coherence
of the velocity streaks. In Figure 12 this effect is also clearly noticeable. The flow structures for
Ma= 0.25 still resemble the structure as it was presented in Figure 2. The change of the boundary
condition or the slight increase of the Mach number compared to those figures do not show in the
flow structure. However, at the Ma= 2 the velocity streaks have indeed grown more coherent. The
number of side-branches and their effect on the streaks have decreased.
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Figure 12. The horizontal cross-section at y + ≈ 0.04 of the flow for Ma= 0.25 (left) and 2 (right).

Figure 13. The span- and stream-wise mean line-spectra of u on the channel centre-plane for different
resolutions and Ma= 2 (left) and comparing Ma= 0.1 and 2 on the 1283-grid (right).

These results show that the proposed numerical technique leads to stable and accurate results
on the 643-grid. The spectral properties of the solutions for different resolutions (483-, 643- and
1283-grids) are compared in Figure 13 (left). The spectra show that, for the supersonic flow, the
resemblance of the spectra on different resolutions remains intact. Also in these cases, the proposed
technique provides damping retained to high wave-numbers, while it still accurately resolves the
lower wave-numbers. In Figure 13 (right) the spectra for different Mach numbers (Ma= 0.1 and
2) are compared for the high-resolution grid. The difference between the spectra is a shift of
the energy from the mid-range to the lower wave-numbers for the higher Mach number. This is
consistent with the notion of the increased streamwise coherence of the streaks. Furthermore, the
damping (from 2 times the Nyquist wave) in the subsonic case seems to be more effective, leading
to an increase of the energy on the grid-scale for the Ma= 2 result.

4. CONCLUSIONS

The described numerical procedure is based on the viscous extension of the LODI-formulation of
the compressible flow equations presented in [10]. The steady mean conditions of the flow in the
turbulent channel are induced by adding a constant force term to the momentum equation in the
main stream flow direction. The magnitude of this force term determines Re� of the flow, which
is set at 360. Furthermore, (since the flow is compressible) the Mach number has to be set. In the
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first calculations it is fixed at 0.1. For the time-discretization a split-time integration is used [11] in
which the diffusive, convective and acoustic fluxes are separated and solved each on their separate
time steps. For the spatial discretization of the convective fluxes an asymmetric implicit scheme is
combined with acoustic upwinding as proposed in [4]. The viscous stresses are calculated using
sixth-order implicit discretization as proposed in [1].

The numerical scheme is applied to the flow on three different resolution (low: 323, middle: 643

and high: 1283) uniform grids. For the low- and middle-resolution grid a non-uniform (wall-normal
expanding) grid is also applied. For all grids investigated, the code leads to numerically stable solu-
tions, as long as the CFL criteria on the three different time step levels are satisfied. The solution on
the high-resolution grid agrees closely with the reference solution of [5]. The mean velocity profile
as well as the contributions to the Reynolds stresses are all accurately resolved. The results on the
middle-resolution are still close to the reference solution, although the differences become notice-
able. On the low-resolution grid the mean velocity profile still appears to be more or less accurate.
However, on this resolution the vortex-bursts cannot be resolved. For the expanding low-resolution
grid the spanwise cross-sections of the flow do show the expected vortex bursts. The results show
that expanded grids increase the accuracy of the solutions; however, the gain appears limited.

The spectra of the solutions of different grids show that the damping imposed by the proposed
technique is restricted to about 2–3 times the Nyquist wavelength. Furthermore, the spectra on the
different resolutions show a high degree of similarity towards the non-resolved scales. This means
that the provided damping scales very well with the resolved scales.

To show the applicability of the proposed numerical technique to higher (subsonic/isentropic)
Mach numbers, the results for a stepwise increase of the Mach number form 0.1 to 0.9 are explored.
The increase of the Mach number results in a slight increase of R11 and R12. The main features
of the flow are independent of the Mach number; in all cases the flow pattern shows the velocity
streaks with local wall-normal vortices. The velocity streaks at higher Mach numbers appear to
become somewhat shorter with more condensed wall-normal vortices. An evaluation of the width
of the autocorrelation peak shows that the size of the structures is indeed (about 10%) smaller for
the larger Mach numbers.

As a last step, the Mach number is increased to 2 for isothermal channel-walls. The mean
temperature and temperature fluctuation profiles show a very good resemblance to those in [6],
this also holds for the mixing length and the correlation of Reynolds stress. The simulations on
all three resolutions give very satisfactory results. Furthermore, spectral analysis shows that, just
as in the subsonic case, the numerical damping is restricted to 2–3 times the Nyquist wavelength
and the spectral similarity on the different resolutions remains valid.

These results show that the proposed numerical technique (the combination of acoustic upwind-
ing with high-order asymmetric implicit discretization) leads to stable and accurate results for
sub- and super-sonic turbulent flows validated by a comparison to the DNS-results in [5, 6]. In the
studied cases, the selective high-wave number damping applied to the non-linear characteristics
replaces both turbulent dissipation models as well as shock-capturing schemes and makes the
proposed technique suitable for both sub- and super-sonic turbulent flows.
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